A Stochastic Approach for Selective Search Algorithms
نویسنده
چکیده
This paper introduces a new algorithm that generates candidate proposals for an object detection pipeline. We introduce Stochastic Selective Search (SSS), a segmentation based selective search method, which differs from previous work in two ways. First and most importantly, SSS is much faster than current state-of-the-art algorithms while maintaining comparable accuracy. This is a result of our efficient stochastic segment merging process. Other work requires the computation of features to determine the order in which segments are merged. We show that currently used features from other work does not improve the results of SSS significantly and are therefore omitted. This makes our algorithm nearly twice as fast as the fastest prior selective search algorithms. Secondly, due to the stochastic merging process of SSS, it is not critically affected when two wrong segments are merged during the merging process, which leads to object proposals of higher quality. We show that SSS outperforms existing deterministic selective search methods while generating the same amount of proposals in less time. Additionally, we demonstrate the performance of our SSS algorithm in a state-of-the-art object detection pipeline based on convolutional networks.
منابع مشابه
Solving a Stochastic Cellular Manufacturing Model by Using Genetic Algorithms
This paper presents a mathematical model for designing cellular manufacturing systems (CMSs) solved by genetic algorithms. This model assumes a dynamic production, a stochastic demand, routing flexibility, and machine flexibility. CMS is an application of group technology (GT) for clustering parts and machines by means of their operational and / or apparent form similarity in different aspects ...
متن کاملA heuristic approach for multi-stage sequence-dependent group scheduling problems
We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are developed to efficiently solve industry-size problem instances. Also, two different initi...
متن کاملA stochastic network design of bulky waste recycling – a hybrid harmony search approach based on sample approximation
Facing supply uncertainty of bulky wastes, the capacitated multi-product stochastic network design model for bulky waste recycling is proposed in this paper. The objective of this model is to minimize the first-stage total fixed costs and the expected value of the second-stage variable costs. The possibility of operation costs and transportation costs for bulky waste recycling is considered ...
متن کاملTraining Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset
Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...
متن کاملA Unified Approach for Design of Lp Polynomial Algorithms
By summarizing Khachiyan's algorithm and Karmarkar's algorithm forlinear program (LP) a unified methodology for the design of polynomial-time algorithms for LP is presented in this paper. A key concept is the so-called extended binary search (EBS) algorithm introduced by the author. It is used as a unified model to analyze the complexities of the existing modem LP algorithms and possibly, help ...
متن کامل